Practice Set 22 Nonparametric Hypothesis Testing of Ordinal Data Part II

I. Darin conducted a training program for 5 recently-hired employees.

This problem first appeared on page 100. At that time it was assumed that the population was approximately normal. If this assumption is not correct or unknown, a .01 level of significance paired difference sign test may be conducted to determine whether training increased worker efficiency.

Employee	Efficienc Before	Sign	
1	8	9	+
2	6	8	+
3	7	8	+ .
4	7	9	+
5	8	10	+,

- A. All 5 employee ratings increased. n is 5.
- B. The Binomial table (ST 1) yields the following: $p(x \ge 5) = .031$
- C. Accept H₀ because .031 > .01. Efficiency did not increase.
- D. Note: With a sample of only five and alpha of .01, the null hypothesis will not be rejected when $\mu = .50$.
- II. Darin wants to reexamine the ANOVA study conducted on page 110. That study assumed populations were normally distributed with equal variances. Those assumptions are not appropriate. Conduct a .01 level of significance Kruskal-Wallis test to determine whether the median weight of parts produced by these 3 departments are equal. Page 110 data has been increased to conform with the *n* ≥ 5 test requirement.

The special section of the second section of the section of the second section of the				
H is the designated statistic.				
N, the number of observations, is 15.				
k, the number of samples, is 3.				
n _k , a sample size, is 5.				
R _k is a sample rank total.				
df = k - 1 = 3 - 1 = 2 $\rightarrow \chi^2 = 9.21$				

Weight	Analysis of	9-mg Par	ts Produce	d by 3 Dep	partments
Department 1		Department 2		Department 3	
Weight	Rank (R₁)	Weight	Rank (R ₂)	Weight	Rank (R ₃)
8.95	5	9.05	7	9.05	7
8.90	2.5	9.05	7	9.15	15
8.90	2.5	9.10	10.5	9.10	10.5
8.92	4	9.07	9	9.13	13
8.88	1	9.11	12	9.14	14
	R ₁ = 15.0		R ₂ = 45.5		R ₃ = 59.5

$$H = \frac{12}{N(N+1)} \left[\frac{(\sum R_1)^2}{n_1} + \frac{(\sum R_2)^2}{n_2} + \dots + \frac{(\sum R_k)^2}{n_k} \right] - 3(N+1)$$

$$= \frac{12}{15(15+1)} \left[\frac{(15)^2}{5} + \frac{(45.5)^2}{5} + \frac{(59.5)^2}{5} \right] - 3(15+1)$$

$$= .05[45.00 + 414.05 + 708.05] - 48.00 = 10.355$$

Reject H₀ because H of 10.355 is greater than 9.21. Medians are not equal.